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Abstrab. The LyldawLifschiu equation for a spin chain with aa easy plane is solved by 
the method of the Darboux ansformation mlrix. In terms of a parricular parameter k, lost 
solutions and Darboux matrices are genemred in a recursive manner. The Jost solutions are 
shown to satisfy the componding Lax equations by a suitable choice of the wnsfants involved 
in the Darboux maVices. A system of linear equations is derived and can yield the exprwions 
for multi-soliton solutions. Asymptotic behaviour in the limits as f + k u  is derived. An 
expression of the one-soliton solution is given in terms of elementary functions of x and t ,  as 
an e m p l e .  

1. Introduction 

The Landau-Lifschitz equation for a spin chain with an easy plane has attracted the attention 
of many authors in recent decades. However, some difficulties exist. Firstly, the Landau- 
Lifschitz equation differs from the equation for an isotropic chain; it could not be solved 
by separating variables in moving coordinates (Tjio and Wright 1977, Quispel and Capel 
1983). Secondly, when one tries to solve it by using the inverse transform, in addition 
to complexity due to the Riemann surface and inquired appearance of a double-valued 
function of the standard spectral parameter, the reflection coefficient at the edges of cuts in 
the complex plane could no& be neglected even in the reflectionless case, as we shall show. 

Mikeska (1978) reduces the equation with an easy plane to the sinexordon equation 
and finds a solution. However, when the applied field tends to zero, the solution becomes 
a travelling-wave solution which does not obviously relate to the nonlinearity of the spin 
chain. The solution given by Long and Bishop (1980) and the solution found by Nakatnura 
and Sasada (1982) by means of variation methods do not satisfy the equation by direct 
substitution. 

Kosevich et al (1977) reduce the Landau-Lifschitz equation for a spin chain with an 
easy plane to an approximate equation and then finds a solution. However, this solution 
cannot be considered as an approximate solution of the Landau-Lifschitz equation for a 
spin chain with an easy plane, since it does not satisfy the equation in the approximation 
of the first order of anisotropy. 

Bolovik (1978) and Bolovik and Kulinich (1984) tried to derive the Marchenko equation, 
but their derivation is, as we shall explain later, questionable, and they could not find a 
one-soliton solution from it. 

0305-4470/95/144063+20$19.50 @ 1995 IOP Publishing Ltd 4063 



4064 Nian-Ning Huang et a1 

Bogdan and Kovalev (1980) attempt to construct exact multi-soliton solutions with the 
direct method of Hirota. However, they could not prove a series of non-trivial identities on 
the parameters of the solution to the end, and hence explicit expressions for the solutions 
were not obtained. 

For the spin with complete anisotropy (say, JB > JZ > JI). Sklyanin (1979) finds an 
expression for its Lax pair, and Mikhailov (1982) and Rodin (1983) are able to reduce the 
problem to the Riemann boundary value problem on a torus and study it by means of the 
inverse tranform. However, the derivation and the results are expressed in terms of elliptic 
functions and are more complicated. Even though the soliton solutions were found, they are 
difficult to transform to those for the case of an easy plane since, say, 53 = Jz (see Faddeev 
and Takhtajan 1987). Therefore, an exact treatment of the Landau-Lifschitz equation for a 
spin chain with an easy plane has never appeared. 

In this paper, the equation is solved by means of the method of Darboux transformation 
matrix. Introducing a particular parameter k, and constructing the Darboux mahix in a 
recursive manner, we show that the Jost solutions can be generated and then soliton solutions 
can be obtained in a recursive manner. We give an explicit expression of the onesoliton 
solution in terms of elementary functions of x and t, as an example. A system of linear 
algebraic equations which can give expressions for multi-soliton solutions is then derived. 

To justify the present method, a particular procedure based upon the well known 
Liouville theorem is developed to show that the Jost solutions generated in a recursive 
manner indeed satisfy the corresponding Lax equations. 

By using a unitary bansformation in spin-space, the system of equations is transformed 
into a form which is more suitable far determining the expressions of multi-soliton solutions. 
Asymptotic behaviour of multi-soliton solutions in the limits as t -+ iw is found directly 
from this system by means of a special procedure (Huang and Chen 1990). 

Finally, the results are expressed in terms of a particular parameter <, which is 
convenient for discussing the behaviour of the expressions in the limit as the anisotropy 
approaches zero. One can see that these expressions tend to those for the isotropic spin 
chain as the anisotropy vanishes. 

In the concluding remarks we discuss reasons why the previous works are unsatisfactory. 

2. The Landau-Lifschitz equation with an easy plane 

The Landau-Lifschitz equation for a spin chain with an easy plane is 

s, = s x s,, + s x JS 

J = diag(0,O. -16p') (2) 

ISI = i ( 1 )  

where the diagonal matrix J ,  

characterizes the easy plane, that is the 12-plane. Here p is a positive constant and 16 is 
introduced for later convenience: The Lax pair for this equation is given by 

(3) 

- ~ P ( S I S ~  - S Z S I ~ ) ~ ~  (4) 

p' = 2 + 4p2. 

L = -ip&ql - iK(S,u, + Szud 
M = iZKZS3oj + i2K/1(SlUI + Szud - iK(S2S3r - S3S~)Ul - iK(S3Slx - SlS3X)Oi 

where parameters p and K satisfy 

(5) 
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If one of them is taken as an independent parameter, the other is a doublevalued function of 
it. As we shall see, in development of the Darboux transformation method it is reasonable 
to introduce an auxiliary parametcr k such that 

k f k-' 
/.L = 2p- 

k - k-' 

From now on we shall drop the arguments n and t unless necessary. 

that 
Since the 12-plane is the easy plane, the asymptotic spin must lie on it and we thus see 

(10) 
is the simplest solution of (1). The corresponding Jost solution of (8) and (9) may be chosen 
as 

s = so = (1,0,0) 

,P0(k) = ue- 'Y(X-2 'U)Q (11) 

~ = f { ~ - i ( u ~ + u ~ + u ~ ) } .  (12) 

where 

3. Darboux transformation matrix 

We define the Jost solutions F,(k) by the Darboux matrices &(k) in a recursive manner: 

F,,(k) = D,(k)F,,-l(k) n = 1,2, .  . . (13) 

where &(k) has poles, as we shall discuss later. The properties of &(k) and its relation 
to the solution S of (1) will be determined. 

It is obvious that - 
p(-L) =a K(-L) = --K(k) (14) 

and then 

L(-L) = UIL(k)Ul~ M ( A )  = UlM(k)UI. 

From (1 1) we can see that 
- - 

PO(-@ = -iu,Fo(k). 

Hence we have 

Suppose k. is a simple pole of D,(k). Then from (18), -in is also a pole of &(k). If 
D,(k) has only these two simple poles we have 

DaW) = CaBn(k) (19) 
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where 

and C, is a 2 x 2 matrix independent of k and 

are residues at poles k, and -in, respectively. From (18) we have 
(kn -k,)C,B, = Dn (--in +k&& = 5" 

- - - 
C, = UIC,OI B, = U I B , ~ ~ .  

From (3). (4) and (1 1) we can see that 

Fc'(k) = F,'(k). 
L(k)  = -Lt(.C) M(k) = -M'( i )  

Hence, we have 
F,-'(k) = F,t(i)  
D;l(k) = Di(k) .  

From (19) we obtain 
0; ' ( k )  = B;'(k)C;'. 

With (26) we obtain 
c;l = c! 

and 
B;'(k) = Bi(E) 

where 

Since 
D.(k)Dl l (k)  = D;l(k)D,(k) = I  

it has no poles, i.e. 

and 
B,, B , @ ~ )  = o 

where the superscript T means transpose. It shows the degeneracy of E,. One can write 

Substituting these into (33) we obtain a system of linear equations: 

r.&8. = 0 (35) 
kn -& 

kn 
n - (Ivn12 + IS.l2) 6. - - 

s.-(IVnl2+16"I2)~Bn-- 

and - 
ynS& = 0. (36) 

kn - kn 

k, 
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Solving these equations one can express a. and p,, in terms of ya and 8.. We then find 

and 

To determine yn and a,, we substitute (13) into (8) &d (9) with suitable subscripts and 
then obtain 

By substituting (19) into (41), and taking the limit as k + kn, we obtain 

aX{cn~,i = L;(~,)C,B, - cnB,L,-l(kn) 

ax{cnBn FL (MI = L.(L)c, E,F,-~ (M. (44) 

(Y" 8") F"--l(k") (45) 

(43) 

and thus 

Because of the degeneracy of E.. the second factor on the right-hand side, i.e. 

must appear in the ieft-hand side in its original form and, hence, it is independent of x. 
Similarly, from (42) we obtain 

%{CnEnFn-i(kn)) Mn(kn)CnBnF,-i(k,) (46) 

which shows that the factor is independent o f t .  We simply obtain 

( y n  & ) = ( b ,  l)F;ll(kn). (47) 

Here bn is a constant determined by the boundary condition (10) and the initial condition 
which we shall see later. Hence, the Darboux matrices Dn(k) have been determined 
recursively, except for C.. By a simple algebraic procedure, An is always non-vanishing 
regardless of the values x and f. This shows the regularity of E, and then E&). 
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4. Relation to the solutions 

In the limit as k -+ 1, from (6) and (7) we have 
1 

k-1 pL(k), K @ )  + 2P- + O(1) (48) 

and then from (41) we obtain 
~~ 

( S n .  U )  = Dn(l)(%i . d D i ( 1 )  (49) 

cnc; = I .  (50) 

(C")lZ = (CJZl = 0 (51) 

in consideration of (25). From (27) we have 

Equations (30) and (SO) yield 

and - 
(C")ll = (Cn)zz I(C")lll = 1. (52) 

Alternatively, in the limit as k + -1, from (6) and (7) we have 

and then from (41) we have 
. ~ b s  = Dn(-lh(Sn-i . m)%D:(-l). (54) 

(55) 

The equivalence of this equation with (50) can be shown, since from (18) we have 
us(S f PIU3 = - c l m u l .  

The expression for &(1) can be obtained from (40): 

5. Properties of C, 

Only (Cn)l I which has a modulus equal to 1 has to be determined. We write 

c, = eions/2 (57) 
where U,, is real and characterizes the rotation-angle of spin in the 12plane. It is necessary 
to mention that the U, may he dependent on x and t. However, we shall see that the 
condition 

W , + O  as 1x1 +fw (58) 

ensures that the asymptotic spin is aligned on the 1-axis. 
Since only relative values of (&, 1) have meaning, we can find 
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where 
1/2 iu(x-2ptt) 

fi =b l  e 
since the last factor on the right-hand side of (59) is proportional to U-'. 

Suppose ImK is positive, then in the limit as x --f CO, fi + 0, and 

It is a linear combination of I and 01, and then commutes with UI . Therefore, in the l i t  
asx-+w, 

(SI *a) = Dl(l)utDj(l) = U I .  

One can show step-by-step that in the limit as x + 00 

(S, .a)=cT,.  (63) 
The same results can be obtained in the limit as x e -CO. Thus (58) is correct. 

6. Complete determination of the Darboux transformation matrix 

To determine on, one must examine the Lax equations carefully. Since e'*63/2 denotes a 
rotation around the 3-axis, it does not effect the value of $3. Substituting (19) into (41), 
and taking the limits as k --f CO and k --f 0 respectively, we obtain 

U C n l  = -~~P(S,)Y+(C,I + {C,li~~(S,-l)m (64) 
aACn & ( O ) l =  i 2 ~  (sn)mWnBn(O)1 - ICn &(O)WP(S,-I )39. (65) 

C, = E,(0)-1/2. (66) 

E,(O) = - An 1 ( (&Iv.12;k,l&J2)2 

Comparing these two equations, we derive 

From (40) we have 

(67) 

Hence; we obtain 

This gives the expression for U,: 

where the superscripts ' and " denote the real and imaginary parts of a constant, respectively. 
With these expressions we obtain 
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7. The ooe-sotiton solution 

Setting n = 1 and substituting (70) into (49) we obtain - - 
- (m, = D1(1)12~1(1)11 +Dl(1)IIDl(l)l* 

(Sh - i(Sdz = D I ( ~ ) I Z & ( ~ ) Z ~  + D ~ ( ~ ) I I D I ( ~ ) ~ .  
- 

In the case of n = 1, (59) gives 

n = fi + if;' 61 = fl - if;' 
where f: = e-O,e'"l 

0 1  = k ; ( X  - V1t - X I )  

.I I, vl=cL;+-Pl. 
KI' 

@I = 2KiX - 2(Ki,UI - KYP;)t + @ID 

Substituting these formulae into (71) and (72) we obtain 

& + $ sin2 ~1 

cosh' 01 + sin' 41 
(SI), = 1-2 

k ,  

(73) 

2&sinh@j'cos41 -2$+cosh01 t? 1-k ' sin@] 
(79) f I'-k,I (SI)' = ~ 

cosh' O1 + %sinz Q1 
k! 

W(l-lk~lz) 2**'(l+IkI 1') . 2- cosh 0 1  cos 41 + 2- sinh 01 sin @I 

cosh' @I + 5 sin' @1 
(si), = (80) 

These are the expressions of the one-soliton solution for a spin chain with an easy plane 
which have never previously been found by any means. They cannot be obviously factorized 
into forms of separated variables even in moving coordinates. Hence, it is pointless to solve 
the Landau-Lifschitz equation for a spin chain with an easy plane by means of separating 
variables. 

In polar coordinates, with the I-axis being the polar axis, namely (SI)] = cose, from 
(78) we have 

4k';z +'*sin' k"' . 41) / (cosh' - 4k;' 
11 - k;I2 

S. A system of linear equations 

We have given a recursive determination of the Jost solutions. However, one may try to 
construct a direct procedure for giving multi-soliton solutions. From (13) we define 

(82) 
(83) 

GN(k) = K N f h ( k )  (84) 

FN(k) = GN(k)Fo(k) 
GN(k) = DN(k)DN- i (k ) . . .D] (k )  . 

Since GN(k) has N pairs of poles, k, and -Ea* n = 1.2,. . . , N ,  we write 
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where 

and KN is a 2 x 2 matrix independent of k 
KN =CNCN-I...CI 

i.e. 
K~ = e izL~d2 

A ,  and A,, can be expressed in terms of the above well-defined quantities. For example, 
we have 

A. = K i l  lim (k - kn)DN(k)DN-l(k). . . Dl(k)  
k-k. 

= K~'DN(kn).--Dn+i(k,)C,(k,  - ~ ~ ) B . D , _ l ( k , ) . . . D i ( k , ) .  (89) 

However, some properties one can derive directly. From (16) and (17 we have 

GN(k) = UIGN(-L)UI (90) 
and then 

I - 
A, = -UI A,uI.  (91) 

GN'(k)-= GL(L) (92) 

As in (26) and (27), we have 

and then 

A;I(k) = AL(L)  (93) 
where 

(94) 
N 1  N 1  

AL(L) = I + - - T A !  - -qA;Ui. 
n = I  k - kn n=l k + k n  

From 

GN(k)GNI(k) = G;l(k)GN(k) = I  (95) 
the residue at k = k, must vanish 

A , A ; ( ~ , )  = o (96) 
I.e. 

This shows the degeneracy of A,, and one can write 



a similar procedure yields that the factor (104) is also independent off .  Hence, we find 

CY.' X ) = ( b ,  l ) @ ( k n )  (1%) 

where b. is a constant which can be shown to appear in (46). We note that a;, A, y; and 
SA are different from a,, &, yn and S,, except that 

y; = y1 8; = 81. (107)  

Substituting (98) into (97) we obtain 

Hence, one can determine the expression for AN(k). 
We now determine KN. From (99), in the limit a s k  -+ M, we obtain 

ax(KN1 = -i2fJ(SN)39(KNl. (110) 

Comparing these two equations leads to 

K N  = A ~ ( o ) - ' / ~ .  (112) 

From (87). the meaning of Q N  is an additional rotation angle around the 3-axis which does 
not affect the value of S3. 
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9. Demonstration 

Now we must show that the Jost solution FN(k) satisfies the corresponding Lax equations. 
Consider FN,(k)F;'(k). Since FN(k) and FG'(k) have poles k,, -kn, k., -kn, n = 
1.2, . . . , N, one can show that FNx(k)F<'(k) is analytic at these points, i.e. the residues 
at these points vanish. For example, at point k, we have 

- -  

1 
lim a,FN(k) = lim - ax {DN(kn). .. D"+l(k.)C.B"F,-l(k,f) . 
k-k. k-k, k - k, (113) 

Since B. is degenerate, as we have shown, the factor in (50) is independent of n, hence 
(113) is equal to 

DN(k")...Dn+i(k")Cn~)} { (% &)&-i(kn)l. (114) 

Multiplying F;' (k,) from the right, the resulting product vanishes on account of (36). We 
thus show that the residue of FNx(k)F;'(k) vanishes at point k = k.. Similarly, residues 
vanish for other points. 

We have 

a, { FN (k)} (k) = GN~GN' (k) - ifiGN(k)ul G,' (k). (115) 
The right-hand side has poles at k = 1 and k = -1. At these poles the right-hand side is 
equal to 

when k + 1 
(116) 

when k + -1. 

When k + CO, the right-hand side of (115) is 
KNXK;' = iiRNxU3. 

Adding these three terms, we obtain 

1118) 

where we have used (102). The quantity FNx(k)F;'(k) - L'(k) is analytical in the whole 
complex k-plane and tends to zero, hence by the Liouville theorem it is equal to zero: 

k 1 
L'(k) = -i4p- ((sN)lOI + ( S N ) ~  - i 4 p m  (.%)3m +,i$NXU3 k2 - 1 

a,(FN(k)]Fi'(k) - L'(k) = 0. (119) 

~ , { K N A N ( O ) ] { K N A N ( O ) ] - '  -L'(o) =o. (120) 

~- i$NZU3 - {i4p(sN)3u3 + i $ 2 N X q 1  = 0. (121) 

L'(k) = L N ( ~ ) .  (122) 

When k -+ 0 this gives 

With (118), (120) is 

From this equation, ONx can be obtained. Substituting the result into L'(k) we find 

Therefore, we have shown the Jost solution FN(k) satisfies the first Lax - -  equation. 

n = l , 2  ,..., N.Wehave 
Similarly, the quantity FNt(k)F;'(k) is analytical at k,, -kn, k., and -kn, 

at {FN (k))Fi l  (k) = G ~ t G i l  (k) + i2fiKG~(k)ul G,'(k). (123) 
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In the neighbourhood of k = 1 we have 

In the neighbourhood of k = -1 we have 

The sum of the first terms of the right-hand sides of these two equations is obviously equal 
to - Z K L N ( ~ ) .  When k -+ 00, the second term on the right-hand side of (121) vanishes and 
the first term tends to 

~ ~ , ( k ) ~ , ' ( k )  - ifnN,u3. (126) 
Denote the sum of the five terms on the right-hand side of these three formulae by M'(k). 
Then FNt(k)Fil(k) - M'(k) is analytical in the whole complex k-plane and tends to zero 
in the limit as k -+ CO. By the Liouville theorem it is equal to zero: 

a,(F~(k)]FiI(k) - M'(k) = 0. (127) 
We turn to show 

M'(k) = M N ( ~ ) .  (128) 
From the first Lax equation we have 

G,vx(k)G;'(k) - & G N ( ~ ) ~ I G ; ' ( ~ )  - L N ( ~ )  = 0. (129) 
In the neighbourhood of k = 1 we find 

(130) G N ~ ( ~ ) G ; ' ( ~ )  - i2p~{G~(k)UlG;'(k)]I d 

GN~(-~)G;'(-I) - i2p--(G~(k)alG;~(k))I d 

a:FN(k) = (LN#) + Lick)) F N ( ~ ) .  

= 0. 
k l  

Similarly, in the neighbourhood of k = --I we have 

(131) = 0. dk k=-I 

Alternatively, from the first Lax equation we have 

(132) 
That is 

GN&) + z G ~ , ( k ) L o ( k ) + G ~ ( k ) L ~ ( k )  = ( L ~ . d k ) + L i ( k ) ) G ~ ( k ) .  (133) 
Multiplying this by u ~ G ; ' ( k )  from the right we obtain 

G~,~(k)UiGi ' (k)  - i2KG,vl(k)Gi1(k) - K~GN(~)u IG; ' (~ )  
= (LN&) + L$(k)) G~(k)UiG;l(k). (134) 

L$(k) = -K2  -4pzl(SN)S1'. (135) 

- i4pG,vx(1)G,v(1) = ~ - i z p ( s ~ ,  . U)G,di)UlG$(i). (136) 

Here we notice that 

In the neighbourhood of k = 1, the terms propoaional to (k - l)-' are 
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Similarly, in the neighbourhood of k = - 1 we have 

- i 4 p G ~ ~ ( - 1 ) G ~ ( - 1 )  = i2PU3f.S~~ .U)ollG~(-i)UlG,'(-i). (137) 
Hence from (130). (131), (136) and (137) we have 

10. Matrix form of the equations 

To solve equations (97) and (98) we introduce a transformation: 

G',(k) = U-'GN(k)U. (141) 

A; = U-'A,U. (142) 

Hence, we have 

However, we must define 

2 n -  - U-'AnU = -U-'UI&U!U = - U - ' U ~ U A ~ U - ~ U ~ L I  = -Fn (143) 

since 

U-'uIT= i. (14.4) 
Corresponding to (96) we have 

A ' A ' + ( ~  m ~ m  ) = o  
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i.e. 

Noticing (IO@, A; can be expressed as 

where 
f n -  - b~/zeiK"<x-2'L"r). 

Substituting (147)'into (146) we obtain 

From these one can find g, and h,, and the AL(k). For example 

From (149) we have 

and then 

From (152) one can find g, and 2" without difficulty, and then Ah(k) l l  and A',(k)rz. 
However, owing to the appearance of g,, and &, n = 1,2,. . . , N in every equation of 
the system (152), it is difficult to obtain explicit expressions for them by the well known 
Binet-Cauchy formula. However, the asymptotic behaviour of the solutions can be derived 
explicitly from them. 

Introduce 

if n =1 ,  1 E 1,2 ,._.. N 

if n = I  - N, 1 E N + l ,  N + 2  ,..., 2N 
(154) .=p; 

and 

E j = l  l c l , 2 ,  ..., 2N (155) 

where we notice that E is a row matrix. Equations (151) and (152) can be written as 

E = Q Q  (156) 
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where Q is a 2N x 2N matrix such that 

From (155) we obtain 
v = E Q - I .  

A&(1)11 can be expressed as 
2N 

A > ( I ) , ~  = 1 + C\lrlpr = I + 9pT 
r=i 

where 

if n = 1 ,  1 E [ 1 , 2 ,  ..., N ]  

if n = 1 -  N ,  E E { N +  1, N = 2 ,  ..., 2 N ) .  

1 

(163) -- 
1 +E" 

From (160) and (161) we obtain 

(164) 
det(Q + PTE) det Q' 

det Q det Q 
A>(l)11 = I + EQ-'PT = 1 +Tr(Q-'PTE] = =- 

where 

Q' = Q + P ~ E .  
Consider det Q, when N = 1, k = kj. Then 

11. Asymptotic behaviour 

From (148) we write 
f ;  = e-Qaei% 

where 

0, = 2rcL.x - ~ ( K ~ P L  - K;$' - n)t + 9,o 
0, = 2K;(x - v.t - x,) 
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Suppose all K: > 0, and 

v N > v N - I > ' ' . > V l .  

The vicinity of V,t + x, is denoted by a,. In the extreme large t ,  these vicinities are 
separated from left to right as 

(172) Q N ,  QN- I . .  .. , QI.  

In the vicinity Q j ,  we have 

In this limit, det Q tends to 

where 

n7n' < j m,m' > j .  

Here we notice that we only those terms leading to Ifj+~l". . . l f ~ I - *  remain. It is difficult 
to calculate this determinant. With a procedure similar to that given in the paper by Huang 
and Chen (1990), consider the term without fj which is given by 
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In addition to the common factor If,+l I-*. . . I f N [ - * ,  these two determinants are clearly 
proportional to 

.. .. .. .. 
where the proportional coefficients are 

and 

respectively. Therefore, in this limit the asymptotic behaviour is similar to the one-soliton 
solution but fj is replacid by 4"' such that 

where 

Hence, in this limit we have det Q -+ det QF), where 

Similarly, in this limit one can obtain the asymptotic expression of det Q'. 
The corresponding @F1 and @?) differ from those given in (175) and (176) in that 

(188) 

Similarly, when t -+ -cc in the vicinity Qj, the corresponding behaviour can be 

(189) 

1 (+) - 
Xj - - (log IajI - log IBj I) . 2 K j  

obtained. For example, in an analogy to (187)' and (188) we have 
r .  <-) - r(+) 

J J 

x!-) I = -x!+' I '  (190) 

rj = 2rj(+) xj = (191) 

Therefore, the total additional displacement of centre Xj and the total phase shift rj are 
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12. Relations to the isotropic spin chain 

In  the l i t  as p --f 0, that is. when the anisoaopy vanishes, it is convenient to introduce 
an auxiliary parameter 5 such that 

p = 5 + pZ5-1 
K = 5 - pz<-'. 

It is obvious that (5) is satisfied. Comparing with (6) and (7) we have 

It is obvious that 5 = r t p  correspond to zero K and to p = rt2p. In the complex p plane, 
these two points are the edges of cuts. 

Alternatively, 5 = zkp correspond to k = CO and k = 0. In the above discussion we 
have seen that they give a contribution which yields the factor C, in (19) or the factor KN in 
(84). These factors are important in order to ensure that the generated Jost solutions satisfy 
the corresponding Lax equations. This indicates that in the inverse transform the edges of 
cuts must give a contribution, even in the reflectionless case. Unfortunately, Bolovik and 
Kulinich (1984) never made any proposals on how to consider these effects. They did not 
obtain an expression for the solution. 

One can then obtain the expression of the one-soliton solution in terms OF the parameter 
5 .  We restrict 51 in the upper-half plane of complex 5 ,  and 

1511 > P. (195) 

Then, from (194) we find 

5;' 
151 - P'I' 

k; = 2 p  

and 

151 12 - P' 
I51 - PI2 

k{ = E  

where c = Jrl correspond to k; > 0 and ki < 0, respectively. We obtain 
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From the expression of cos8, (198), we obtain properties of the soliton: (a) the depth 
of the valley is not a constant but varies with time periodically, (b) the width of the valley 
is also not a constant but varies with time periodically, (c) the integral 

(202) 
m lw dx (1 - cos 0) 

is also not a constant and is dependent ontime periodically. These are important propemes 
which have never been seen in the~other soliton solutions obtained until now, 

One can see that when p --f 0, the expressions (198)-(201) reduce obviously to those 
for an isotropic chain. 

13. Concluding remark 

In OUT view, for the Landau-Lifschitz equation for a continuous spin chain with an easy 
plane, exact soliton solutions have never previously been found by any means tried. The 
expressions for soliton solutions obtained in this work may be useful for further theoretical 
study and practical application. 

From the expression of the one-soliton solution (198H201). it is obvious that it cannot 
be expressed in the form of products of separated variables in moving coordinates. Hence, 
it cannot be found by separating variables. 

When the anisotropy vanishes, the solutions obtained tend obviously to those for the 
isotropic chain. From (201) one can see that the solution given by Kosevich et al (1977) 
does not satisfy the Landau-Lifschitz equation for a spin chain with an easy plane even in 
the first order of anisotropy, and there is no reason to consider it as an approximate solution. 

From the explicit expression for the one-soliton solution, one can see that it is difficult 
to express it in a Hirota form of factorization. It is not surprising that the work of Bogdan 
and Kovalev (1980) did not obtain the desired results. 

In the works of Bolovik and Kulinich (1984), they developed an inverse transform 
method. In addition to questions about their derivation, they did not consider the 
contributions due to  the^ edges of cuts in the complex plane which appear even in the 
reflectionless case. Hence, they did not obtain any useful final expressions. 

It is well known that from the gauge equivalence of the isotropic spin chain to 
the nonlinear Schriidinger equation with vanishing boundary conditions (Zakharov and 
Takhtajan 1979), one can obtain the soliton solutions of the former from the soliton solutions 
of the latter by a gauge transformation. In the work of N a k a ”  and Sasada (1982), 
they showed gauge equivalence of the spin chain with an easy plane to the nonlinear 
Schrodinger equation in a positive dispersion regime (NLS(+) equation) in the case of a non- 
vanishing boundary value (say, some constant value c). From the expressions for multi- 
soliton solutions of the Landau-Lifschitz equation for a spin chain with an easy plane, we 
have shown that the solutions tend to those for the isotropic spin chain. As we known, the 
NLS(+) in the case of a non-vanishing boundary value has dark-soliton solutions; when the 
boundary value c tends to zero the equation has no non-trivial solutions, except 0. Hence, 
the gauge equivalence between these two equations may not exist 

The Darboux transformation method in soliton theory was developed a while ago (see, 
for instance, Matveev and Salle 1991). however, its matrix form was first introduced by 
Levi et al (1981) in solving the Kdv equation. Many authors have given contributions in 
this direction (see, Gu and Zhou 1987, Chen et al 1988, 1989, Chau et a1 1991). For 
these nonlinear equations, their Lax pairs have a common property in that the Lax pairs are 
independent of particular solutions of the nonlinear equations in the limit as the spectral 
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parameters tend to infinity, or in the limit as those tend to zero. For the Landau-Lifschitz 
equation for a spin chain with an easy plane, the Lax pair does not have this property. The 
present work gives a successful example for the method of Darboux transformation matrix. 
The problem due to the lack of this property has been solved by detailed investigation of 
the properties of the Darboux matrix and by the Liouville theorem. These may help the 
inverse transform method for treating the same problem in its own framework. 
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