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Abstract. The Landau-Lifschitz equation for a spin chain with an easy plane is solved by
the method of the Darboux transformation matrix. In terms of a particular parameter &, Jost
solutions and Darboux matrices are generated in a recursive manner. The Jost solutions are
shown to satisfy the corresponding Lax equations by a suitable choice of the constants involved
in the Darboux matrices. A system of linear equations is derived and can yield the expressions
for multi-soliton solutions. Asymptotic behaviour in the limits as 1 = +oo is derived. An
expression of the one-soliton solution is given in terms of elementary functions of x and ¢, as
an example,

1. Introduction

The Landau-Lifschitz equation for a spin chain with an easy plane has attracted the attention
of many authors in recent decades. However, some difficulties exist. Firstly, the Landau—
Lifschitz equation differs from the equation for an isotropic chain; it could not be solved
by separating variables in moving coordinates (Tjio and Wright 1977, Quispel and Capel
1983). Secondly, when one tries to solve it by using the inverse transform, in addition
to complexity due to the Riemann surface and inquired appearance of a double-valued
function of the standard spectral parameter, the reflection coefficient at the edges of cuts in
the complex plane could not be neglected even in the reflectionless case, as we shall show.

Mikeska (1978) reduces the equation with an easy plane to the sine—Gordon equation
and finds a solution. However, when the applied field tends to zero, the solution becomes
a travelling-wave solution which does not obviously relate to the nonlinearity of the spin
chain. The solution given by Long and Bishop (1980) and the solution found by Nakamura
and Sasada (1982) by means of variation methods do not satisfy the eguation by direct
substitution. ,

Kosevich et af (1977) reduce the Landav—Lifschitz equation for a spin chain with an
easy plane to an approximate equation and then finds a solution. However, this solution
cannot be considered as an approximate solution of the Landau—Lifschitz equation for a
spin chain with an easy plane, since it does not satisfy the equation in the approximation
of the first order of anisotropy.

Bolovik (1978) and Bolovik and Kulinich (1984) tried to derive the Marchenko equation,
but their derivation is, as we shall explain later, questionable, and they could not find a
one-soliton solution from it.
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Bogdan and Kovalev (1980) attempt to construct exact multi-soliton solutions with the
direct method of Hirota. However, they could not prove a series of non-trivial identities on
the parameters of the solution to the end, and hence explicit expressions for the solutions
were not obtained.

For the spin with complete anisotropy (say, Jz > Ja > Jy), Sklyanin (1979) finds an
expression for its Lax pair, and Mikhailov (1982) and Rodin (1983) are able to reduce the
problem to the Riemann boundary value problem on a torus and study it by means of the
inverse tranform. However, the derivation and the results are expressed in terms of elliptic
functions and are more complicated. Even though the soliton solutions were found, they are
difficult to transform to those for the case of an easy plane since, say, J3 = J» (see Faddeev
and Takhtajan 1987). Therefore, an exact treatment of the Landan-Lifschitz equation for a
spin chain with an easy plane has never appeared.

In this paper, the equation is solved by means of the method of Darboux transformation
matrix. Introducing a particular parameter &, and constructing the Darboux matrix in a
recursive manner, we show that the Jost solutions can be generated and then soliton solutions
can be obtained in a recursive manner. We give an explicit expression of the one-soliton
solution in terms of elementary functions of x and f, as an example. A system of linear
algebraic equations which can give expressions for multi-soliton solutions is then derived.

To justify the present method, a particular procedure based upon the well known
Liouville theorem is developed to show that the Jost solutions generated in a recursive
manner indeed satisfy the comresponding Lax equations.

By using a unitary transformation in spin-space, the system of equations is transformed
into a form which is more suitable for determining the expressions of multi-soliton solutions,
Asymptotic behaviour of multi-soliton solutions in the limits as ¢ — oo is found directly
from this system by means of a special procedure (Huang and Chen 1990).

Finally, the results are expressed in terms of a particular parameter {, which is
convenient for discussing the behaviour of the expressions in the limit as the anisotropy
approaches zero. One can see that these expressions tend to those for the isotropic spin
chain as the anisotropy vanishes.

In the concluding remarks we discuss reasons why the previous works are unsatisfactory.

2. The Landau-Lifschitz equation with an easy plane

The Landau-Lifschitz equation for a spin chain with an easy plane is

S =8x8:+85xJ§ ISl=1 (n
where the diagonal matrix J,

J = diag(0, 0, —16p%) 2)

characterizes the easy plane, that is the 12-plane. Here p is a positive constant and 16 is
introduced for later convenience.” The Lax pair for this equation is given by

L = —ipSioy — ik (S101 + S200) 3
M= i2k.'2330'3 -+ iQIC].L(S] oy + 5262) — iK(SgS;;x e S3ng)0’1 - ifC(SaS]x - SI S3_-¢)O’2
—1p£(S152c — S2812)03 Q)]

where parameters ¢ and « satisfy

p =1+ 407 &)
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If one of them is taken as an independent parameter, the other is a double-vaiued function of
it. As we shall see, in development of the Darboux transformation method it is reasonable
to introduce an auxiliary parameter k& such that :

kE+ k!

w=72p PRy )
2
k=20—. @
The Lax equations are
3. F(k) = L{k)F (k) ‘ (8)
8, F(k) = M(K)F (k). . )]

From now on we shall drop the arguments x and ¢ unless necessary.
Since the 12-plane is the easy plane, the asymptotic spin must lie on it and we thus see
that

8§ =5=(1,0,0) (10)

is the simplest solution of (1). The corresponding Jost solution of (8) and (9) may be chosen
as

Fo(k) = Uevr—2utlos . an
where

U = L{I —i{o) + o2 + o)} (12)

3. Darboux transformation matrix

We define the Jost solutions F,(k) by the Darboux matrices D, (k) in a recursive manner:
Fu(k) = Dy(R) Fry (K) n=1,2,... (13)

where D,{k) has poles, as we shall discuss later. The properties of D,(k) and its relation
to the solution S of (1) will be determined.
1t is obvicus that

w0 =p®  k(-k) =« (14)
and then

Li-ky=o0ilor  M(-k) = o M{E)or. (15)
Fro_m (11) we can see that

Fo(—k) = —io1 Fo (). (16)
Hence we have

Fu(—k) = —io1 Fo (k) ' Can

D, (—k) = a1 D, (kK)o ‘ (18)

Suppose %, is a simple pole of D, (k). Then from (18), —k, is also a pole of D, (k). If
D, (k) has only these two simple poles we have

Dy (k) = Cu By (k) (19)
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where :

Ba(k) = {1+]Z‘__£:'B,;+ "f’:’_';f"ﬁ,,} (20)
and C, is a 2 x 2 matrix independent of k and

(kn —k)CoBy =Dy (~kn+kn)Cy B, = Dy 21)
are residues at poles &, and ks respectively. From (18) we have

Cy = 01Cpo B, = &1 B,oy. (22)

From (3), (4) and (11) we can see that

Ly =-Lik)y MKk =-ME (23)

Fyl(ky = Fi(B). (24)
Hence, we have

F7U(&) = Fltk) (25)

D;l(k) = Dl (k). (26)
From (19) we obtain

D7k = BTN R)C. @7)
With (26) we obtain

oy - CI (28)
and

B (k) = Bl (%) (29)
where

Bl = {1 + !j::;,, B+ _if'; _t:nal Bforl} : (30)

Since

Da(k)D7H(K) = D; ' (k) Dy = 1 (1)

it has no poles, i.e.
’ ByBl{k,) =0 (32)

and

B, {1 - B 4 :MO';BTG] } =0 (33)

M 2%, n

where the superscript T means transpose, It shows the degeneracy of B,. One can write

By = (‘;:)(y,, &), (34)
Substituting these into (33) we obtain a system of linear equations;

= (1 18,) 8 = 28, =0 (35)
and

- ky—kn
& — (vl + 18:1%) Be — Vadnttn =0. (36)
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Solving these equations one can express &, and g, in terms of y, and 8,. We then find

k_ ( Rulyal® + kaldnl? 0 7 ' ~
B, = o rirn n[¥n _ e
"= ( 0 Balbal? + Knlyal? s,,)“’“ W On

n

and
5k (vl ksl 0 &Y, x -
B"‘AR( 0 Byl 2+ knfynl? y,,)(“” %o (8
where
A = Ven Py l® + 18259 = Yoy = Ju Plva 218,12
= (knlyal® + & 18,12 Kalds ) + K|y 12). (39
" Hence, B, (k) can be expressed as
B (k) = 1 (ré,,[m%kntanlz 0 )
" k — k) (k k) A, 0 Fn 18517 + koo [y 12
2 Enianiz';‘knl}’nlz _ 0 22 _0 )7,13,1
X{k ( 0 kfzb’nlz +knwn12 +k(kn kn) S ¥y 0
Fon |y |2 + K852 0 )}
—ik 2 #l¥n nin _ . 40
e ( 0 EnlOal? + knlya ]2 “0)

To determine ¥, and &,, we substitute (13) into (8) and (9) with suitable subscripts and
then obtain

82Dk} = Ly (k) Dp(k) — D k) Lt () 1)

8 Da(k) = My (k) D (k) — DnliO) M1 (6). “2)
By substituting (19) into (41), and taking the limit as k¥ — k,, we obtain

3¢(CaBa} = La(k)Cr By — CuBuLinos (k) @3)
and thus ’

B{CoBa Frct (k) } = Ln(enYCo B Frm (k). (44

Because of the degeneracy of B,, the second factor on the right-hand side, i.e.
(Vn 82) Fry(ky) (45)

must appear in the left-hand side in its originai form and, hence, it is independent of x.
Similarly, from (42) we obtain

a:{CanFn—-l(kn)} = M (kn)Cy By Fy_y (ky) (46)
which shows that the factor is independent of t. We simply obtain
(3 8n)=(bn 1)F (ka). @7

Here b, is a constant determined by the boundary condition (10) and the initial condition
which we shall see later. Hence, the Darboux matrices D.(k) have been determined
_ recursively, except for C,. By a simple algebraic procedure, A, is always non-vanishing
regardless of the values x and r. This shows the regularity of B, and then B, (k).
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4. Relation to the solutions

In the limit as £ — 1, from (6} and (7) we have

B, £ > 20— +O(D) @)
and then from (41) we obtain

(8 + ) = Da(1)(S51 - ) DY(D) (49)
in consideration of (25). From (27) we have

C.Cl=1. (50)
Equations (30) and (50) yield

(Ciz =(Cp)a1 =0 51)
and

Cohi=Clz  Cul=1 (52)

Alternatively, in the limit as £ — —1, from (6) and (7) we have

(k) — —Zpk—:_—l +0(1) (k) ~> Z‘Ok_j-"f +0(1) (53)
and then from (41) we have

63(Sy + 0363 = Dy(=1)03( S + @Yo DY(-1). (54
The equivalence of this equation with (50} can be shown, since from (18} we have

03(8 - oYo3 = —01(8 - o)y (33)
The expression for B;(1) can be obtained from (40):
B,(1) = 71 _ (Eulyn|2+kn|5nl2 - 0 2)

(1 = k(1 + kDA, 0 Ku|6p)® + Ku|Vnl
g (cl — kD 8,12 + (L — £l vl U2 — K2 ubn_ )
(kg — k2bnvn A~ kDknlyal® + (L = I5)kn 1802

(56

5. Properties of C,

Only (Cyp}y which has a modulus equal to 1 has to be determined. We write
Cn = eiw,;a'glz (57)

where w, is real and characterizes the rotation-angle of spin in the 12-plane. It is necessary
to mention that the @, may be dependent on x and ¢. However, we shall see that the
condition

wy, =0 as |x| » £oo (58)

ensures that the asymptotic spin is aligned on the 1-axis.
Since only relative values of (b, 1) have meaning, we can find

(v &)~ (f r‘)(? 1) 59)

i —i
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where
fi = b:ﬂeixl(x—Zy.]t) (60)

since the last factor on the right-hand side of (59) is proportional to U1,
Suppose Im« is positive, then in the limit as x — oo, f; — 0, and

1 ky + & 0 )
B~ ——— | ™ -
o (l—kx)(1+k1)( 0 ki+k

A —kDky + (1 ~ kD)k, -—(k2 k%) 1)
--(1’cz ) (1 — k3 + (1~ k?')kl

It is a linear combination of 7 and oy, and then commutes with ¢;. Therefore, in the limit

s x = 00,

(81-0) = Di(Dor Di(1) = 0. (62)
One can show step-by-step that in the limit as x — oo
' (8n-0) =an. : (63)

The same resuits can be obtained in the limit as x — —oc. Thus (58) is correct.

6. Complete determination of the Darboux transformation matrix

To determine w,, one must examine the Lax equations carefully. Since e#*/2 denotes a
rotation around the 3-axis, it does not effect the vatue of 3. Substituting (19) into (41),
and taking the limits as k — oo and & — 0 respectively, we obtain

3:{Cn} = —i20(85)303{C,} + {Cr}i20(Sp-1)303 (64)
3:{Ca B (M)} = 120(8,)303{C Bo(0)} — {C,, B, (0)}i2p (S, -1)303 (65)
Comparing these two equations, we derive
Cp = By (0)™/% (66)
From (40) we have
1 ( (lalyal? + KalaP) 0 )
B,(0) = — - . 67
O A, ( 0 (a1 2 + &l 2 ©n
Hence, we obtain
- Enl‘sﬂlz"|'k.nh’r:|2 0
— 1/2 -
=4 ( 0 kalval? + Kal8, P ) €8

This gives the expression for w,:

ky sl — 18,2

ky \yal? 4 (8, [2}

where the superscripts * and ” denote the real and imaginary parts of a constant, respectively.
With these expressions we obtain

1w, = arctan { (69)

i
D, =
0= (1 — k) (1 +E)AN?
o U= KD+ (1 — Dl (k2 — E2)7,8,
&2 — k25, (L — KDl 2 A (1 — K262
(70)

Hence, we have completely determined the Darboux matrices in a recursive manner.
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7. The one-soliton soletion

Setting » = 1 and substituting (70) into (49) we obtain

(S1)3 = DD D1 (D + DD DTy (71)
1)1 — 10812 = DD DDy + Di(DuDi(Dy,. (72)
In the case of n = 1, (59) gives
n=f+if7t s=f-if]" (73)
where
fl=e® et : (74)
By = 2ujx — 20y — 1 e + Dro (75)
©; = 2 (x — Vit — x1) (76)
Kn’
Vi=ui+ ;c-;'w’{- an
Substituting these formulae into (71) and (72) we obtain
452 B oL g o
(S ) 1 5 ”_kil{z + Etz_ E331) 1 (78)
] 1 = - "
cosh? @, + %&; sin? @,
1
2% sinh @) cos & — 25 174E cosh @, sin @,
11—k F & 1=k
(S1)2 = = e 79
cosh? ®; + o sin® @,
1
27—k ) 2 ) - :
S = 2_-W cosh @ cos Dy + ZJIW sinh @ sin &, . 0)

kﬂz R
cosh®>®; + T sin® &
1

These are the expressions of the one-soliton solution for a spin chain with an easy plane
which have never previously been found by any means. They cannot be obviously factorized
into forms of separated variables even in moving coordinates. Hence, it is pointless to solve
the Landau-Lifschitz equation for a spin chain with an easy plane by means of separating
variables.

In polar coordinates, with the 1-axis being the polar axis, namely ($1); = cos#, from

(78) we have
9 A 4k
Y 1 1 .2 2 —_——
tan i (I1 —klzi" +-kT'2-sm ¢>1) / (cosh ©, B —kizlz . (81}

8. A system of linear equations

We have given a recursive determination of the Jost solutions. However, one may fry to
construct a direct procedure for giving multi-soliton solutions. From (13) we define

Fy(k} = Gy (k) Fo(k) (82)

Gyk) = Dy(K)Dyi(R) - -- Dy (k). | (83)
Since Gy (k) has N pairs of poles, &, and —k,, n = 1,2,..., N, we write

Gulk) = KnAn(k) (84)
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where
av@ =1+ a3 L3, (85)
—k—k, = k&
and Ky is a 2 % 2 matrix independent of k:
7 Ky =CyCp-1-+-C1 (86)
i.e.
Ky = eifas/2 7 o i 87)
N
Qy =Y @ (88)
h=l

A, and A, can be expressed in terms of the above well-defined quantities. For example,
we have

An = K3! lim ( — k) Dy () Dy (6) -+ D1 k)

= K;v—lDN(kn) M Dn-H (kn-)cn(kn - 'Eu)Bn Dn—-l (kn) te Dl(kn)- (89}
However, some properties one can derive directly. From (16) and (17 we have

Gu (k) = 061Gy (=k)oy ‘ (30)
and then

Ay =~ A0y, - ' ' o1
As in (26) and (27), we have

Gy (k)= G (B) . S ©2)
and then ’

AR ) = AL ©3)
where '

Af(IE)=I+i I_AT—ZN: L oATG o4)

N L T Ekgk, Ol

From

Gnk)Gy (k) = G G =1 93)
the residue at & = k, must vanish: )

AnAl () =0 (96)
ie.

Lo &1 T :

Am(I+n§=;km_E"An—;km_]_kno',Anoa) =0. o7
This shows the degeneracy of A,,, and one can write

a= () o . | ©8)

n

Alternatively, we have
O Fy (k) = Ly(R)Fyik). (99}
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Hence, we have

Grx(k) — Gn (k) Lo(k) = La(R)G N ().
In the limit as £ — 1 we obtain

(S - ) = Gy (DGR (D).
Similarly, in the limit as £ = —1, we have

— 03(Sy - 9)o3 = Gu(—DarGh(-=1)

which is equivalent to (101) on account of (54) and (90).
In the limit as £ — k,, from (99) we have

Bx {KnAnFo(kn)} = Ly (k) {Kn An Folkn)} .
Since A, is degenerate, the factor

(v &) Folka)
must be independent of x. From

8, Fy(k) = My (k) Fy (k)

(100)

{101)

102)

{103)

(104}

(103)

a similar procedure yields that the factor (104) is also independent of . Hence, we find

(v, 8)y=(by 1)F; (ks

where b, is a constant which can be shown to appear in (46). We note that o,

8, are different from &, 8., ¥» and 8., except that
Y =n 3, = 8.
Substituting (98) into (97) we obtain

1
ka (rats +,5:) +ka+k (ratn + 872) B

n=l

N
Zk T +6’5')ﬁn+zk 7 (s + o)
m

n=l n=1

Hence, one can determine the expression for Ax (k).
We now determine Ky. From (99), in the limit as £ — oo, we obtain

0 {Kn} = —2p(Sx)3o3{Kn}.
In the limit as ¥ — 0, we have

3 {KnAn(0)} = 120(Sn)303{ KnAn(0)}.
Comparing these two equations leads to

Ky = An(@~172,

(106)

", ¥, and

(107

(108)

(109)

(110)

a1

(112)

From (87), the meaning of £y is an additional rotation angle around the 3-axis which does

not affect the value of 5.
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9. Demonstration

Now we must show that the Jost solution Fy (k) satisfies the correspondmg Lax equations.
Consider Fy.(k)Fg Yk). Since Fy(k) and FNI(k) have poles %, —kn, kny —ky, n =
1,2,..., N, one can show that Fy, (k) Fy k) is analytic at these points, i.e. the residues
at t.hese points vanish. For example, at point £, we have

n) ot Dn+l(kn)Can Fr (kn)} . (113)

Since B, is degﬁnerate as we have shown, the factor in (SO) is independent of x, hence
(113) is equal to

lim & Fyk) =

Ox {DN(kn) Dro (kn)Co (,B )] {(ve 8n) Fpmi(kad}. (114)

k—k, kK — K,

Multiplying Fy Y(k,) from the right, the resultmg product vanishes on account of (36). We
thus show that the residue of Fy (k) FN (k) vanishes at point k = k,. Similarly, residues
vanish for other points.
We have .
B FN(O}FR (k) = Gy Gy (k) — inGu (ko1 G5 (k). (115}

The right-hand side has poles at k = 1 and & = —1. At these poles the right-hand side is
equal to

- in%GN(I)a'IG‘EI(I) when £ — 1

“ (116)
- i2pmGN(—1)a[G]V'I (-1) when k — —1.
When k — o0, the right-hand side of (115) is
KyeKy' = i3Qnz03- 117
Adding these three terms, we obtain
k 1
L'(k) = —idp5— 5 ((SN)10’1 + (Sn)202) — idp——7o o (SN)30'3 + i3 Q2073 (118)

where we have used (102). The quantity Fy,(k)Fy I(!c) — L'(k) is analytical in the whole
complex k-plane and tends to zero, hence by the Liouville theorem it is equal to zero:

B (Fn(k)}Fy' (k) — L' (k) = 0. A (119
‘When & — O this gives )
8:{Ky An(OHKNAN©)) ™ — L'(0) = 0. (120)
With (118), (120} is -
— £ Qy05 — {i4p(Sy)s03 + 13,03} = 0. ) (121)
From this equation, {2y, can be obtained. Substituting the result into L'(k) we find
L'(k) = Ly(k). (122)

Therefore, we have shown the Jost solution Fy (k) satisfies the first Lax equation.
Similarly, the quantity Fy(k)Fy YEy is analytical at k,, —k,, k,, and —k,,
n=12,....,N. We have

B Fy () Fy' (k) = GGyl (k) + 2ux Gy (k)01 G 7 (k). (123)
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In the neighbourhood of £ = 1 we have
240Gy (k) G (k)

~ 18P e G (oG (1) + 8% - (Cn MG O

k- 1)2 k—1dk
STV (124)

In the neighbourhood of & = —1 we have
2ux Gy (k)01 GR' (k)

1
~ B Gy (101G (1) — 85 (G (W) G '@,

(k+ 1)2 k+4+1dk E=—1
T+ (125)
The sum of the first terms of the right-hand sides of these two equations is obviousiy equal

to —2k Ly (k). When k — o0, the second term on the right-hand side of (121) vanishes and
the first term tends to

Gni k)G (k) ~ i Q0. (126)

Denote the sum of the five terms on the right-hand side of these three formulae by M’ (k).
Then Fy, (k) Fy Yy — M'(k) is analytical in the whole complex %-plane and tends to zero
in the limit as k — co. By the Liouville theorem it is equal to zero:

W Fn ()} Fy' (k) — M'(k) = 0. (127)
We turn to show
M'(k) = Mn(k). {128)
From the first Lax equation we have
Grz()Gy (k) —~ ik Gn (ko1 Gy (k) — Ly (k) = 0. (129)
In the neighbourhood of &k = 1 we find
GrDGF () ~ 2o (G RN GF WY _ =0, (130)
Similarly, in the neighbourhood of £ = —1 we have
Gre(=DGF (D) 20 S (Gu R G3 @__ =0. sy
Alternatively, from the first Lax equatlon we have
32 Fn (k) = (Lyx(k) + L (R)) Fn (k). (132}
That is
GNxx (B) + 2G yz (k) Lo(k) + G (LG k) = (Lnx(k) + Ly (k) G (). (133}

Multiplying this by o1 Gy (k) from the right we obtain
Guzs(R)o1Gy () ~ 2 Gz (KGR (B) ~ K> Gn(R)on G (k)

= (Ly:(k) + L3 (K)) G ()1 Gy (&) - (134)
Here we notice that
Ly (k) = —* — 4p*|(Sw)sl™ (135)

In the neighbourhood of & = 1, the terms proportional to (k — 1)~ are
— 140Gy (NGn (1) =—i2p(Sx - )G (D)1 Gy (D). (136)
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Similarly, in the neighbourhood of £ = —1 we have
~i4pGu(—1)Gn(—1) = 12003(Syx - 003G u(— Doy GF' (—1).
Hence from (130), (131), (136) and (137) we have

1 1
i8p ﬁa{Gn(k)mG't(k)} —i8p mE{GN(k)WG_I(k)} o

= 4p— IGN,,(DG;'(D ~4p—r

1
py 1GNx(—1JG H=1)
1
= ZPE“___I(SN.: - {Gn(1)a Gy (1)}

1
+2pk s IUB(SN.: - )03 {Gu(—1)n Gy (-_-1)}

1 1
= Zﬂk—(SNx «a)Sy o) — ZP}C-_'l"_"*Us(SNx - o) Sy - a)os
2k

ZPk {(SNx o}(Sy - 0) = 63(Sn; - 0)(Sy - o)}

+2p5— "{(SNx « WS - 0) 4+ 03(Syx - THSy - 0‘)03}

k2 —

Hence, we have

M (k) = =2k Ly(k) + &% {(Snx - @)(Sy - @) — 03(Sx - 0)(Sy - Thos}
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(137

(138)

+(u = 2p)3 {(Snx - ) Sy - &) + 03(Syx - 7)(Sy - &)03} +ii szmcra

Substituting this into (127) and setting £ = 0, we obtain
152,03 = 205 {(Swz + 0)(Sy + &) + 03(Snx - O)(Sy - F)o3} .

(139)

(140)

Substituting this into (140) we finally obtain (128}. Therefore, the Jost solution Fy(k)

satisfies the second Lax equation.

10. Matrix form of the equations

To solve equations (97} and (98} we introduce a transformation:
Gy =UT'GnR)U.
Hence, we have
AL =U"TA,U.
However, we must define
A =UTAU = U 01 Au0 U = U i UALU- ' U = ~4,
since
Uy U =1.
Corresponding to (96) we have
Al A ) =0

(141)

(142)

(143)

(144)

(145)



4076 Nian-Ning Huang et al

ie.
D Wy
AL (1 + j, - Al ) =0. (146)
n=l km - n==i km +k” [
Noticing (106), A} can be expressed as
Ay = (ﬁ) (f £ (147)
where
fu= b’llfzeixn(x—zﬂm_ (148)

Substituting (147) into (146) we obtain

N

Jo==2 g Unfa 1 +Z T nfat £ £ 8 (149)
n=1 ""m

N
== Y e et £ TR +§: i k Gnfat 3 e (150)

n=1 *m n n=1
From these one can find g, and 4, and the A (£). For example

1
Ay(Hn =1+ Z k T8~ Tk g,,f,, (151)

From (149) we have

N
== ! ~2f-2 —2 ¢
= gkm#?,,(wf"‘ 5 )g"ﬁ'+zkm+k A+ £ )8 fo (152)
and then
3 2 -2 Y -
1_;’( i (1+fm Fa et — ,,Z_;km—k U+ 525 ek (153)

From (152) one can find g, and g, without difficulty, and then A) (k)1 and Ay (K)i2.
However, owing to the appearance of g, and 2,, # = 1,2,..., N in every equation of
the system (152), it is difficult to obtain explicit expressions for them by the well known
Binet-Cauchy formula. However, the asymptotic behaviour of the solutions can be derived
explicitly from them.

Introduce
frn=!1¢1,2,....N
y =) (154)
Enfn fr=I-N,IleN+1,N+2,...,2N
and
E =1 iel,2,...,2N (155)

where we notice that E is a row matrix. Equations (151) and (152) can be written as

E=v0Q (156)
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where Q is a 2N x 2N matiix such that

Qo = O+ 2D (157

Ovinn = 7= . A+ 7252 | (158)

Onitam = 7 fc,,, A+ 20 ' (159)
1 .

Oninivim = T—=(1+ fufu). (160)

From (155) we obtain
v =EQL (161)
A (1)1; can be expressed as

aN
Ay =1+ WP =1+wPT o (162)
!=1 "
where
1 Ik Fn=1 le{l,2,....N}
p=1 7 (163)
- = ifn=1—-N,le{N+1,N=2,...,2N}.
a ifn e{N+ }
From (160) and (161) we obtain
_ ~ det(Q + PTE) detQ’
vDu =1+EQ7PT=14+TH{Q'PTE} = et detg (164)
where
0'=0+PE (165)
Consider det @, when N =1, k = k;. Then
HmA+ 5 FpA+IA
detQ =det| | - i =4
};J—_;c;(l'}‘lfjl ) ﬁ(l—!-f} )
(k; + k;)* -8 4y 4, 74
O o L ZA | . +
4ij|2|kj—k,-[2( 5T~ ki — k; 12|f’| 41k R (f 5 )
(166)
11. Asymptotic behaviour
From (148) we write
fi=em Ot ‘ (167)
where
P, = 2y x — 2 phy — Ky " — R)E + Do (168)
O, =2 (x — Vut —xp) (169)

Vo=t + ,,u,, N (170)
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Suppose all «; > 0, and

V> Vyor > -

->V1.

a7

The vicinity of V,f + x, is denoted by £2,. In the extreme large ¢, these vicinities are

separated from left to right as

Sy, Oty ..., 1.

In the vicinity £2;, we have

ifrn<j

if m > j.

x—Vit—x, > —0 Ifu|'1—-—>0
X — Vit — X — 00 | ful™l = 00
In this limit, det Q tends to
JU S i
kgtkyr ki 0 Byl ke—k) 0
L /R /i o SRS 1/ i /20 4
Ky bRt 2k, Kytkyr Jeymieyr ky—ky Kp—icns
-2 =2 -2 g=2 -2 F=2 "]
0 fm f[ fm f!ﬂ 0 fm‘ f! fm fﬂ'
km+kj km+km' kn—kj km— ™
1 I 1 ]
Ko kplty _ 0 Kptetene kn'i'_{?d’ _ 20_ )
i gt 57 i 4] i
ky—ky ky—ky ky =k kptky 2k kytkpy
T s il
O n R 113 O He M i
kn=kty b =teny Ky Hiy e L
where
nn <j m,m > j.

(172)

(173)

(174)

(175)

Here we notice that we only those terms leading to | fj1 [~8...1fn|~% remain. It is difficult
to calculate this determinant. With a procedure similar to that given in the paper by Huang
and Chen (199Q), consider the term without f; which is given by

i i
kybky Rty
1

Fybleyr E
0 0
O S
by=ky  kp—k;

_1 1
kj _k"l' -k]—'kj

0 0

0
0

e
kRt
0
0

ey =Rt

1

L]
— I

byt

ud

ky—kyr

o

ky +ku'
1
j.'; ke

0

The term involving f}"* is the determinant

1
Kkt 0
oy
/I
0 3
o 4
km"!‘k,l
1
den~key 0
1
Fg—kt 0
—
0 j;" !
P

0
5
Ry ke
iy
km“"'km'

0

0
It
Fop =y

|_

T
£

&
—;,l;—o o

|

b
o
e

—_— 0
kn-l-kf
&=k 0
2 F=l
0 S S
km-—kmv
1
kn-bky 0
1
% 0
52 Fe
0 Sat Sy
Fon Ry
I
ke =iy 0
i
0 !
L
o S
) A 4
f(n-}-kJ 0
1
% 0
f—lf—z
0 1yt
km+kmf

(176)

@77
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In addition to the common factor | _ﬁ.,_ll‘s--- | fv1~8, these two determinants are clearly

proportional to
1 1 1

Knthey kp—Kt kn—ky i 1_
L 1 i N
Tty Fthy Tty 1 (178}
D S A En—kyr ko har
Kby Ktk ZkJ
where the proportional coetficients are
1 Gy + P G — k) + ) 179)
2kj |kj - kj [2 n=1 (kj +kn)2(kj “’kn)z
and
' D (e — k)2 (k) + kn)?
S L] el o 150)
2k.f m=j+1 (k + k) (k = k)

respectively. Therefore, in this 11m1t the asymptotic behaviour is similar to the one-soliton
solution but f; is replaced by f » such that

(Y =578 - asy)
where
1—[(k — k) + K (182)
v Ck; k) — k)
N - — .
g = ] L=t + ) (183)
w5 k)G — )
Hence, in this limit we have det 0 — det Q}"'), where
w___ k) )-8 (14 p (4
dot 0 = — b (L7 + o (eGP asy

Similarly, in this limit one can obtain the asymptotic expressmn of detQ'.
The corresponding O; ) and <I>(+) differ from those given in (175) and (176) in that

fb}"') = 2xjx — 2(:cj ,u,j — & u}’)t + Py + 1";'” (185)

o =2 (x - Vit~ - X{¥) (186)
where

1"(."') = argot- — arg B; ' (187)

X9 = (Iog letj] — log IB)1) - (188)

Similarly, when ¢ — —co in the vicinity £;, the corresponding behaviour can be
obtained. For example, in an analogy to (187) and (188) we have

ry =-r . (189)

X7 = —x (190)
Therefore, the total additional displacement of centre X; and the total phase shift I'; are

Iy =2r® X;=2X". (191)
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12. Relations to the isotropic spin chain

In the limit as ¢ — 0, that is, when the anisotropy vanishes, it is convenient to introduce
an auxiliary parameter { such that

p=g+p% (192)
c=1 -0, (193)
It is obvious that (5) is satisfied. Comparing with (6) and (7) we have
{+p
= —. 194
{—p (154)

It is abvious that ¢ = +p comrespond to zero « and to p = 3+2p. In the complex u plane,
these two points are the edges of cuts.

Alternatively, { = %o correspond to k = co and t = 0. In the above discussion we
have seen that they give a contribution which yields the factor C, in (19) or the factor K in
(84). These factors are important in order to ensure that the generated Jost solutions satisfy
the corresponding Lax equations. This indicates that in the inverse transform the edges of
cuts must give a contribution, even in the refiectionless case. Unfortunately, Bolovik and
Kulinich (1984) never made any proposals on how to consider these effects. They did not
obtain an expression for the solution.

One can then obtain the expression of the one-soliton solution in terms of the parareter
Z. We restrict ¢ in the upper-half plane of complex ¢, and

&1l > p. {193)
Then, from (194) we find

gl =2 ¢ 6
= 20—
' 12y — 222
and
1] — p?
4=l mor 197
P el (197)
where ¢ = £1 correspond to k] > 0 and k] < 0, respectively. We obtain
ey 4‘92;”2 .
B b B sin? @,
S)r=1-2 3] {0l E",«Jz)”2 : 198)
cosh? @ + g b sin” @y
&2 o 5L P4 .
S = ZEIFF sinh @; cos Py — Zl-;lLlﬁf—,—g—m —% cosh @ sin ®y 199)
T
cosh® ®; + (%%—5’5535 sin® &,
fplt oy -
_ 248 cosh @ cos D1 + 24 o sinh ©; sin &)
($1)s = . 200

42 ny i
cosh? @, + mﬁ)r_?pjf sin® &,

In polar coordinates, with the I-axis being the polar axis, namely (S;); = cos®, from
(198) we have

112 2 rr2 112
tanze_ ~[& + 407 sin? @, cosh? ®; — ki . 20D
2 a2 dal® — 2P 1el?
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From the expression of cos &, (198), we obtain properties of the soliton: (a) the depth
of the valley is not a constant but varies with time periodically, (b) the width of the valley
1s also not a constant but varies with time periodically, (c) the integral

o0
dx (1 — cos6) {202)
—o
is also not a constant and is dependent on time pericdically. These are important properties
which have never been seen in the other soliton solutions obtained until now,
One can see that when p — 0, the expressions (198)-(201) reduce obviously to those
for an isotropic chain.

13, Concluding remark

In our view, for the Landau-Lifschitz equation for a continuous spin chain with an easy
plane, exact soliton solutions have never previously been found by any means tried. The
expressions for soliton solutions cbtained in this work may be useful for further theoretical
study and practical application.

From the expression of the one-soliton solution (198)—{201), it is obvious that it cannot
be expressed in the form of products of separated variables in moving coordinates. Hence,
it cannot be found by separating variables.

‘When the anisotropy vanishes, the solutions obtained tend obviously to those for the
isotropic chain. From (201) one can see that the solution given by Kosevich et al (1977)
does not satisfy the Landau-Lifschitz equation for a spin chain with an easy plane even in
the first order of anisotropy, and there is no reason to consider it as an approximate solution.

From the explicit expression for the one-soliton solution, one can see that it is difficult
to express it in a Hirota form of factorization. It is not surprising that the work of Bogdan
and Kovalev (1980) did not obtain the desired results.

In the works of Bolovik and Kulinich (1984), they developed an inverse transform
method. In addition to questions aboui their derivation, they did not consider the
contributions due to the edges of cuts in the complex plane which appear even in the
reflectionless case. Hence, they did not obtain any useful final expressions.

It is well known that from the gauge equivalence of the isotropic spin chain to
the nonlinear Schrodinger equation with vanishing boundary conditions (Zakharov and
Takhtajan 1979), one can obtain the soliton solutions of the former from the soliton solutions
of the latter by a gauge transformation. In the work of Nakamura and Sasada (1982),
they showed gauge equivalence of the spin chain with an easy plane to the nonlinear
Schridinger equation in a positive dispersion regime (NLS** equation) in the case of a non-
vanishing boundary value (say, some constant value ¢). From the expressions for multi-
soliton solutions of the Landau-Lifschitz equation for a spin chain with an easy plane, we
have shown that the solutions tend to those for the isotropic spin chain. As we known, the
NLS) in the case of a non-vanishing boundary value has dark-soliton solutions; when the
boundary value ¢ tends to zero the equation has no non-trivial soluiions, except 0. Hence,
the gauge equivalence between these two equations may not exist.

The Darboux transformation method in soliton theory was developed a while ago (see,
for instance, Matveev and Salle 1991), however, its matrix form was first introduced by
Levi et @l (1981) in solving the Kdv equation. Many authors have given contributions in
this direction (see, Gu and Zhou 1987, Chen er al 1988, 1989, Chau et al 1991). For
these nonlinear equations, their Lax pairs have a common property in that the Lax pairs are
independent of particular solutions of the nonlinear equations in the limit as the spectral
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parameters tend to infinity, or in the limit as those tend to zero. For the Landau-Lifschitz
equation for a spin chain with an easy plane, the Lax pair does not have this property. The
present work gives a successful example for the method of Darboux transformation matrix.
The problem due to the lack of this property has been solved by detailed investigation of
the properties of the Darboux matrix and by the Liouville theorem. These may help the
inverse transform method for treating the same problem in its own framework.
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